UUCMS NO						

B.M.S COLLEGE FOR WOMEN AUTONOMOUS BENGALURU-560004 END SEMESTER EXAMINATION – APRIL /MAY 2023 M.Sc. Mathematics – I Semester ORDINARY DIFFERENTIAL EQUATIONS

Course Code MM104T Duration: 3 Hours

QP Code: 11004 Maximum Marks: 70

Instructions: 1) **All** questions carry **equal** marks. 2) Answer **any five** full questions.

- 1. a) Find the Wronskian of $y^{(5)} y^{(4)} y' + y = 0$ on I = [0,1].
 - b) Define a fundamental set. Show that $\{\Psi_j(x): j = 1 \dots n\}$ forms a fundamental set for $L_n y = 0$ on *I* if and only if $W\{\Psi_j(x): j = 1 \dots n\} \neq 0, \forall x \in I$.
 - c) If $\phi_1(x)$ is a solution of $y'' + a_1(x)y' + a_2(x)y = 0$. Then show that $\phi_2(x) = \phi_1(x)f(x)$ is also a solution of the same differential equation provided f'(x)satisfies the equation $(\phi_1^2 y)' + a_1(\phi_1^2 y) = 0$. Also show that $\phi_1(x)$ and $\phi_2(x)$ are linearly independent. (3+7+4)
- 2. a) State and prove Lagrange's identity.
 - b) Solve : y'' + y = cosec x, $0 < x < \frac{\pi}{2}$, y(0) = 0, $y\left(\frac{\pi}{2}\right) = 0$ by the method of variation of parameters.
 - c) Define adjoint differential equation. Find the solution of $x^2y'' + 9xy' + 12y = 0$ by finding the solution of adjoint equation. (6+4+4)
 - 3. a) State and prove Sturm's comparison theorem on the zeros of the solution of a selfadjoint differential equations.
 - b) If $\{\phi_j(x): j = 1 ..., n\}$ be solutions of $L_n y = 0$ on some interval I, then prove that $W\{\phi_j(x): j = 1 ..., n\} = W\{\phi_j(x_0): j = 1 ..., n\} * exp\{-\int_{x_0}^x \frac{a_1(t)}{a_0(t)} dt\}, x, x_0 \in I.$ (7+7)
 - 4. a) Find the Eigen value and Eigen functions of the differential equation $y'' + \lambda y = 0$; $y(0) = 0 = y(\pi)$.
 - b) Define a self-adjoint eigen value problem. For such a problem, prove that(i) The eigenvalues are real.

(ii) The eigen functions corresponding to distinct eigen values are orthogonal over given interval.
 (7+7)

- 5. a) Find the ordinary points, singular points, regular-singular points, irregular singular points and points at infinity of the Chebyshev differential equation.
 - b) Using Frobenius method obtain the solution of the differential equation $2x^2y'' + xy' + (x^2 - 3)y = 0$ about its regular singular point.
- 6. a) Prove that: $\frac{1}{1-t} \exp\left(\frac{-xt}{1-t}\right) = \sum_{n=0}^{\infty} L_n(x)t^n$.
 - b) Prove the orthogonal property for Chebyshev polynomials.
 - c) Prove the following relations:

(i)
$$H'_n(x) = 2nH_{n-1}(x)$$
 (ii) $H''_n(x) - 2xH'_n(x) + 2nH_n(x) = 0.$ (5+5+4)

(5+9)

7. a) Find the fundamental matrix solution of the following system of equations:

$$\frac{dx}{dt} = A(t)X(t), \ A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{bmatrix}, \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

b) Explain various types of critical points of the linear system:

$$\frac{dx}{dt} = ax + by; \frac{dy}{dt} = cx + d, \quad ad - bc \neq 0.$$
(7+7)

- 8. a) Find all the critical points, their nature and stability of each of the critical point of the given system: $\frac{dx}{dt} = 1 y$; $\frac{dy}{dt} = x^2 y^2$
 - b) State Liapunov theorem. Construct Liapunov function and hence determine the stability of the critical point (0,0) of the following nonlinear systems:

(i)
$$\frac{dx}{dt} = -x + 2x^2 + y^2$$
; $\frac{dy}{dt} = -y + xy$
(ii) $\frac{dx}{dt} = x^3 - 3xy^4$; $\frac{dy}{dt} = x^2y - 2y^3 - y^5$
(7+7)
