B.M.S COLLEGE FOR WOMEN AUTONOMOUS
 BENGALURU-560004
 END SEMESTER EXAMINATION - APRIL /MAY 2023
 M.Sc. Mathematics - I Semester ORDINARY DIFFERENTIAL EQUATIONS

Course Code MM104T

Duration: 3 Hours

QP Code: 11004

Maximum Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. a) Find the Wronskian of $y^{(5)}-y^{(4)}-y^{\prime}+y=0$ on $I=[0,1]$.
b) Define a fundamental set. Show that $\left\{\Psi_{j}(x): j=1 \ldots . n\right\}$ forms a fundamental set for $L_{n} y=0$ on I if and only if $W\left\{\Psi_{j}(x): j=1 \ldots n\right\} \neq 0, \forall x \in I$.
c) If $\phi_{1}(x)$ is a solution of $y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0$. Then show that $\phi_{2}(x)=\phi_{1}(x) f(x)$ is also a solution of the same differential equation provided $f^{\prime}(x)$ satisfies the equation $\left(\phi_{1}^{2} y\right)^{\prime}+a_{1}\left(\phi_{1}^{2} y\right)=0$. Also show that $\phi_{1}(x)$ and $\phi_{2}(x)$ are linearly independent.
2. a) State and prove Lagrange's identity.
b) Solve : $y^{\prime \prime}+y=\operatorname{cosec} x, 0<x<\frac{\pi}{2}, y(0)=0, y\left(\frac{\pi}{2}\right)=0$ by the method of variation of parameters.
c) Define adjoint differential equation. Find the solution of $x^{2} y^{\prime \prime}+9 x y^{\prime}+12 y=0$ by finding the solution of adjoint equation.
3. a) State and prove Sturm's comparison theorem on the zeros of the solution of a selfadjoint differential equations.
b) If $\left\{\phi_{j}(x): j=1 \ldots . n\right\}$ be solutions of $L_{n} y=0$ on some interval I, then prove that $W\left\{\phi_{j}(x): j=1 \ldots . n\right\}=W\left\{\phi_{j}\left(x_{0}\right): j=1 \ldots . n\right\} * \exp \left\{-\int_{x_{0}}^{x} \frac{a_{1}(t)}{a_{0}(t)} d t\right\}, x, x_{0} \in I$.
4. a) Find the Eigen value and Eigen functions of the differential equation

$$
y^{\prime \prime}+\lambda y=0 ; y(0)=0=y(\pi)
$$

b) Define a self-adjoint eigen value problem. For such a problem, prove that
(i) The eigenvalues are real.
(ii) The eigen functions corresponding to distinct eigen values are orthogonal over given interval.
5. a) Find the ordinary points, singular points, regular-singular points, irregular singular points and points at infinity of the Chebyshev differential equation.
b) Using Frobenius method obtain the solution of the differential equation $2 x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-3\right) y=0$ about its regular singular point.
6. a) Prove that: $\frac{1}{1-t} \exp \left(\frac{-x t}{1-t}\right)=\sum_{n=0}^{\infty} L_{n}(x) t^{n}$.
b) Prove the orthogonal property for Chebyshev polynomials.
c) Prove the following relations:
(i) $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$ (ii) $H_{n}^{\prime \prime}(x)-2 x H_{n}^{\prime}(x)+2 n H_{n}(x)=0$.
$(5+5+4)$
7. a) Find the fundamental matrix solution of the following system of equations:

$$
\frac{d X}{d t}=A(t) X(t), \quad A=\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right], X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

b) Explain various types of critical points of the linear system:

$$
\begin{equation*}
\frac{d x}{d t}=a x+b y ; \frac{d y}{d t}=c x+d, \quad a d-b c \neq 0 . \tag{7+7}
\end{equation*}
$$

8. a) Find all the critical points, their nature and stability of each of the critical point of the given system: $\frac{d x}{d t}=1-y ; \frac{d y}{d t}=x^{2}-y^{2}$
b) State Liapunov theorem. Construct Liapunov function and hence determine the stability of the critical point $(0,0)$ of the following nonlinear systems:
(i) $\frac{d x}{d t}=-x+2 x^{2}+y^{2}$; $\frac{d y}{d t}=-y+x y$
(ii) $\frac{d x}{d t}=x^{3}-3 x y^{4}$; $\frac{d y}{d t}=x^{2} y-2 y^{3}-y^{5}$
